ANGSD: Analysis of next generation Sequencing Data

Latest tar.gz version is (0.938/0.939 on github), see Change_log for changes, and download it here.

Glcomparison: Difference between revisions

From angsd
Jump to navigation Jump to search
No edit summary
No edit summary
 
Line 63: Line 63:


aplot <- function(x,...){
aplot <- function(x,...){
     d<-exp(scan(x))
     d<-(scan(x))
     p <- 1-d[1]-d[length(d)]
     p <- 1-d[1]-d[length(d)]
     barplot(norm(d[-c(1,length(d))]),col=2,legend=paste0("var=",round(p*100,3)),...)
     barplot(norm(d[-c(1,length(d))]),col=2,legend=paste0("var=",round(p*100,3)),...)

Latest revision as of 16:44, 5 February 2016

For some analysis the choice of GL model will make a huge impact, this is shown in the example where we estimate the sfs using -GL 1 and -GL 2, for two list of BAM files downloaded from the 1000genomes project website. First list are 12 CEU samples from 2011, and second list are the same 12 CEU samples but from 2013.

Below are the commands used

angsd -b new.list -minQ 20 -minMapQ 30 -isBed 1 -sites 1kg.accesible2.gz -GL 1 -out res/new.list.gl1 -doSaf 1 -r 1: -anc hg19ancNoChr.fa -P 6
angsd -b new.list -minQ 20 -minMapQ 30 -isBed 1 -sites 1kg.accesible2.gz -GL 2 -out res/new.list.gl2 -doSaf 1 -r 1: -anc hg19ancNoChr.fa -P 6
angsd -b old.list -minQ 20 -minMapQ 30 -isBed 1 -sites 1kg.accesible2.gz -GL 1 -out res/old.list.gl1 -doSaf 1 -r 1: -anc hg19ancNoChr.fa -P 6
angsd -b old.list -minQ 20 -minMapQ 30 -isBed 1 -sites 1kg.accesible2.gz -GL 2 -out res/old.list.gl2 -doSaf 1 -r 1: -anc hg19ancNoChr.fa -P 6

with

cat new.list 
NA06985.mapped.ILLUMINA.bwa.CEU.low_coverage.20120522.bam
NA06994.mapped.ILLUMINA.bwa.CEU.low_coverage.20120522.bam
NA07000.mapped.ILLUMINA.bwa.CEU.low_coverage.20130415.bam
NA07056.mapped.ILLUMINA.bwa.CEU.low_coverage.20130415.bam
NA07357.mapped.ILLUMINA.bwa.CEU.low_coverage.20130415.bam
NA11829.mapped.ILLUMINA.bwa.CEU.low_coverage.20130415.bam
NA11830.mapped.ILLUMINA.bwa.CEU.low_coverage.20120522.bam
NA11831.mapped.ILLUMINA.bwa.CEU.low_coverage.20120522.bam
NA11832.mapped.ILLUMINA.bwa.CEU.low_coverage.20120522.bam
NA11840.mapped.ILLUMINA.bwa.CEU.low_coverage.20120522.bam
NA11881.mapped.ILLUMINA.bwa.CEU.low_coverage.20120522.bam
NA11992.mapped.ILLUMINA.bwa.CEU.low_coverage.20120522.bam
cat old.list
NA06985.mapped.ILLUMINA.bwa.CEU.low_coverage.20111114.bam
NA06994.mapped.ILLUMINA.bwa.CEU.low_coverage.20111114.bam
NA07000.mapped.ILLUMINA.bwa.CEU.low_coverage.20111114.bam
NA07056.mapped.ILLUMINA.bwa.CEU.low_coverage.20111114.bam
NA07357.mapped.ILLUMINA.bwa.CEU.low_coverage.20111114.bam
NA11829.mapped.ILLUMINA.bwa.CEU.low_coverage.20111114.bam
NA11830.mapped.ILLUMINA.bwa.CEU.low_coverage.20111114.bam
NA11831.mapped.ILLUMINA.bwa.CEU.low_coverage.20111114.bam
NA11832.mapped.ILLUMINA.bwa.CEU.low_coverage.20111114.bam
NA11840.mapped.ILLUMINA.bwa.CEU.low_coverage.20111114.bam
NA11881.mapped.ILLUMINA.bwa.CEU.low_coverage.20111114.bam
NA11992.mapped.ILLUMINA.bwa.CEU.low_coverage.20111114.bam

and 1kg.accesible2.gz are the accessible regions downloaded from the ucsc,and hg19ancNoChr.fa contains the ancestral state.

We do the optimisation with:

realSFS res/new.list.gl1.saf 36 -P 24 >res/new.list.gl1.saf.ml
realSFS res/new.list.gl2.saf 36 -P 24 >res/new.list.gl2.saf.ml
realSFS res/old.list.gl1.saf 36 -P 24 >res/old.list.gl1.saf.ml
realSFS res/old.list.gl2.saf 36 -P 24 >res/old.list.gl2.saf.ml

and plot with

SAM <- system("ls res/*.ml|grep -v 2",intern=T)
GATK <- system("ls res/*.ml|grep 2",intern=T)
norm <- function(x) x/sum(x)

aplot <- function(x,...){
    d<-(scan(x))
    p <- 1-d[1]-d[length(d)]
    barplot(norm(d[-c(1,length(d))]),col=2,legend=paste0("var=",round(p*100,3)),...)
}

png("glcomparison.png")
par(mfrow=c(2,2))
aplot(SAM[1],main=c("gl=SAMtools","bam=2013"))
aplot(GATK[1],main=c("gl=GATK","bam=2013"))
aplot(SAM[2],main=c("gl=SAMtools","bam=2011"))
aplot(GATK[2],main=c("gl=GATK","bam=2011"))
dev.off()